Multiphase correlations References

Multiphase correlations References:

Correlation Description Reference
1 Anand, et al Predicting Thermal Conductivities of Formations from Other Known Properties. JPT (Oct. 1980).
2 Ashford, F.E, & Pierce, P.E. The Determination of Multiphase Pressure Drops and Flow Capacities in Downhole Safety Valves (Storm Chokes). SPE 5161 1974 SPE Annual Fall Meeting, Houston Oct. 6-9.
3 Beggs, H.D. & Brill, J.P. A Study of Two Phase Flow in Inclined Pipe. JPT (May 1973), 606-617.
4 Churchill-Chu Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder. International Journal Heat Mass Transfer (1975) 18, 1049-1053.
5 Fancher, & Brown, G.G. Prediction of Pressure Gradients for Multiphase Flow in Tubing. SPE Journal (Mar. 1963), 59-64.
6 Fortunati Two Phase Flow Through Well-head Chokes. SPE 3742 1972 SPE European Spring Meeting, Amsterdam, May 17-18.
7 Hagedorn, A.R. & Brown, K.E. Experimental Study of Pressure Gradients Occurring During Continuous Two-Phase Flow in Small-Diameter Vertical Conduits. JPT (Apr. 1965), 475-484.
8 Mandhane et al A Flow Pattern Map for Gas-liquid Flow in Horizontal Pipes. International Journal Multiphase Flow, 1, 537-541.
9 Moody Friction Factor for Pipe Flow. Trans., AIME (1944), 66, 671-675.
10 Mukherjee, H. & Brill, J.P. Liquid Holdup Correlations for Inclined Two-Phase Flow. JPT (May 1983), 1003-1008.
11 Oranje Condensate Behaviour in Gas Pipeline is Predictable. Oil and Gas Journal (July 1973), 39-43.
12 Orkiszewski Predicting Two Phase Pressure Drop in Vertical Pipes. JPT (June 1967), 829-833.
13 Duns, H. Jr & Ros, N.C.J. Vertical Flow of Gas and Liquid Mixtures in Wells. Proc., Sixth World Petroleum Congress, Frankfurt (1963) 451.
14 Tansev, E. Startzman, R. & Cooper, A. Predicting Pressure Loss and Heat Transfer in Geothermal Wellbores. SPE 5584 1975 SPE Annual Fall Meeting, Dallas, Sept. 28-Oct. 1.
15 Gould, T.L, Tek, M.R. & Katz, D.L. Two-Phase Flow Through Vertical, Inclined, or Curved Pipe. JPT, August, 1974, 915-925.

Reference: PROSPER Use’s Guide.

Continue reading

Multiphase flow correlations

The primary purpose of a multiphase flow correlations is to predict the liquid holdup (and hence the flowing mixture density) and the frictional pressure gradient.  This article details the most widely used correlations for the prediction of the Vertical Lift Performance.

The oil and water are lumped together as one equivalent fluid. Thus flow correlations in common use consider liquid/gas interactions.  They are therefore more correctly termed two-phase flow correlations.  Depending on the particular correlation, flow regimes are identified and specialized holdup and friction gradient calculations are applied for each flow regime.

There is no universal rule for selecting the best flow correlation for a given application. When an outflow performance simulator is used, it is recommended that a Correlation Comparison always be carried out. By inspecting the predicted flow regimes and pressure results, the User can select the correlation that best models the physical situation.

Multiphase flow correlations:

Fancher & Brown:

  • Fancher and Brown is a no-slip correlation, with no flow regime map. Therefore, this correlation cannot be recommended for general use and it is provided for use as a quality control (should not be used for quantitative work).
  • It gives the lowest possible value of Vertical lift Performance (VLP). Therefore, Measured data falling to the left of Fancher Brown on the correlation comparison plot indicates a problem with fluid density (i.e PVT) or field pressure data.
  • According to Brown, it is only suitable for 2-3/8 – 2-7/8 inch tubing.
  • It is for GLR less than 5000 scf/bbl and flow rates less than 400 bpd.
  • It has its own friction factor model, which is independent of pipe roughness.

Continue reading